Survival Analysis with Python#

lifelines is a complete survival analysis library, written in pure Python. What benefits does lifelines have?

  • easy installation

  • internal plotting methods

  • simple and intuitive API

  • handles right, left and interval censored data

  • contains the most popular parametric, semi-parametric and non-parametric models

https://lifelines.readthedocs.io/

pip install lifelines

Cheibub, José Antonio, Jennifer Gandhi, and James Raymond Vreeland. 2010. “Democracy and Dictatorship Revisited.” Public Choice, vol. 143, no. 2-1, pp. 67-101.

from lifelines.datasets import load_dd

data = load_dd()
data.head()
ctryname cowcode2 politycode un_region_name un_continent_name ehead leaderspellreg democracy regime start_year duration observed
0 Afghanistan 700 700.0 Southern Asia Asia Mohammad Zahir Shah Mohammad Zahir Shah.Afghanistan.1946.1952.Mona... Non-democracy Monarchy 1946 7 1
1 Afghanistan 700 700.0 Southern Asia Asia Sardar Mohammad Daoud Sardar Mohammad Daoud.Afghanistan.1953.1962.Ci... Non-democracy Civilian Dict 1953 10 1
2 Afghanistan 700 700.0 Southern Asia Asia Mohammad Zahir Shah Mohammad Zahir Shah.Afghanistan.1963.1972.Mona... Non-democracy Monarchy 1963 10 1
3 Afghanistan 700 700.0 Southern Asia Asia Sardar Mohammad Daoud Sardar Mohammad Daoud.Afghanistan.1973.1977.Ci... Non-democracy Civilian Dict 1973 5 0
4 Afghanistan 700 700.0 Southern Asia Asia Nur Mohammad Taraki Nur Mohammad Taraki.Afghanistan.1978.1978.Civi... Non-democracy Civilian Dict 1978 1 0
data['regime'].unique()
array(['Monarchy', 'Civilian Dict', 'Military Dict', 'Parliamentary Dem',
       'Presidential Dem', 'Mixed Dem'], dtype=object)
data['democracy'].unique()
array(['Non-democracy', 'Democracy'], dtype=object)
from lifelines import KaplanMeierFitter
kmf = KaplanMeierFitter()
T = data["duration"]
E = data["observed"]

kmf.fit(T, event_observed=E)
<lifelines.KaplanMeierFitter:"KM_estimate", fitted with 1808 total observations, 340 right-censored observations>
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
plt.figure(figsize = (8, 8))

ax = plt.subplot(111)

dem = (data["democracy"] == "Democracy")

t = np.linspace(0, 50, 51)
kmf.fit(T[dem], event_observed=E[dem], timeline=t, label="Democratic Regimes")
ax = kmf.plot_survival_function(ax=ax)

kmf.fit(T[~dem], event_observed=E[~dem], timeline=t, label="Non-democratic Regimes")
ax = kmf.plot_survival_function(ax=ax)

plt.title("Lifespans of different global regimes");
_images/38507f24591fc168055a33682aa362f3ff85b92692941dec0ee314dbfd6bf4ad.png
regime_types = data['regime'].unique()
plt.figure(figsize = (12, 8))


for i, regime_type in enumerate(regime_types):
    ax = plt.subplot(2, 3, i + 1)

    ix = data['regime'] == regime_type
    kmf.fit(T[ix], E[ix], label=regime_type)
    kmf.plot_survival_function(ax=ax, legend=False)

    plt.title(regime_type)
    plt.xlim(0, 50)

    if i==0:
        plt.ylabel('Frac. in power after $n$ years')

plt.tight_layout()
_images/54c0fd7976c9c43dbbbf0acb3e2bddfa70d7949a700d248a4e3beb6b05205a30.png
data['un_continent_name'].unique()
array(['Asia', 'Europe', 'Africa', 'Americas', 'Oceania'], dtype=object)
import pandas as pd
df = pd.get_dummies(data['regime'])
df.head()
Civilian Dict Military Dict Mixed Dem Monarchy Parliamentary Dem Presidential Dem
0 0 0 0 1 0 0
1 1 0 0 0 0 0
2 0 0 0 1 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
data = pd.concat([data, df], axis=1)
data
ctryname cowcode2 politycode un_region_name un_continent_name ehead leaderspellreg democracy regime start_year duration observed Civilian Dict Military Dict Mixed Dem Monarchy Parliamentary Dem Presidential Dem
0 Afghanistan 700 700.0 Southern Asia Asia Mohammad Zahir Shah Mohammad Zahir Shah.Afghanistan.1946.1952.Mona... Non-democracy Monarchy 1946 7 1 0 0 0 1 0 0
1 Afghanistan 700 700.0 Southern Asia Asia Sardar Mohammad Daoud Sardar Mohammad Daoud.Afghanistan.1953.1962.Ci... Non-democracy Civilian Dict 1953 10 1 1 0 0 0 0 0
2 Afghanistan 700 700.0 Southern Asia Asia Mohammad Zahir Shah Mohammad Zahir Shah.Afghanistan.1963.1972.Mona... Non-democracy Monarchy 1963 10 1 0 0 0 1 0 0
3 Afghanistan 700 700.0 Southern Asia Asia Sardar Mohammad Daoud Sardar Mohammad Daoud.Afghanistan.1973.1977.Ci... Non-democracy Civilian Dict 1973 5 0 1 0 0 0 0 0
4 Afghanistan 700 700.0 Southern Asia Asia Nur Mohammad Taraki Nur Mohammad Taraki.Afghanistan.1978.1978.Civi... Non-democracy Civilian Dict 1978 1 0 1 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1803 Zambia 551 551.0 Eastern Africa Africa Levy Patrick Mwanawasa Levy Patrick Mwanawasa.Zambia.2002.2007.Civili... Non-democracy Civilian Dict 2002 6 1 1 0 0 0 0 0
1804 Zambia 551 551.0 Eastern Africa Africa Rupiah Bwezani Banda Rupiah Bwezani Banda.Zambia.2008.2008.Civilian... Non-democracy Civilian Dict 2008 1 0 1 0 0 0 0 0
1805 Zimbabwe 552 552.0 Eastern Africa Africa Ian Smith Ian Smith.Zimbabwe.1965.1978.Civilian Dict Non-democracy Civilian Dict 1965 14 1 1 0 0 0 0 0
1806 Zimbabwe 552 552.0 Eastern Africa Africa Abel Muzorewa Abel Muzorewa.Zimbabwe.1979.1979.Civilian Dict Non-democracy Civilian Dict 1979 1 1 1 0 0 0 0 0
1807 Zimbabwe 552 552.0 Eastern Africa Africa Robert Mugabe Robert Mugabe.Zimbabwe.1980.2008.Civilian Dict Non-democracy Civilian Dict 1980 29 0 1 0 0 0 0 0

1808 rows × 18 columns

data.columns
Index(['ctryname', 'cowcode2', 'politycode', 'un_region_name',
       'un_continent_name', 'ehead', 'leaderspellreg', 'democracy', 'regime',
       'start_year', 'duration', 'observed', 'Civilian Dict', 'Military Dict',
       'Mixed Dem', 'Monarchy', 'Parliamentary Dem', 'Presidential Dem'],
      dtype='object')
data['Democracy'] = [1  if i == 'Democracy' else 0 for i in data['democracy']]
from lifelines import CoxPHFitter

cph0 = CoxPHFitter()

dat = data[['duration', 'observed', 'start_year','Democracy']]

cph0.fit(dat, duration_col='duration', event_col='observed')

cph0.print_summary() 
model lifelines.CoxPHFitter
duration col 'duration'
event col 'observed'
baseline estimation breslow
number of observations 1808
number of events observed 1468
partial log-likelihood -9613.93
time fit was run 2021-06-11 03:48:19 UTC
coef exp(coef) se(coef) coef lower 95% coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z p -log2(p)
start_year -0.00 1.00 0.00 -0.00 0.00 1.00 1.00 -0.82 0.41 1.28
Democracy 0.97 2.65 0.06 0.85 1.10 2.34 3.00 15.27 <0.005 172.57

Concordance 0.60
Partial AIC 19231.86
log-likelihood ratio test 264.70 on 2 df
-log2(p) of ll-ratio test 190.94
dat = data[['duration', 'observed', 'start_year',
     'Civilian Dict', 'Military Dict', #'Monarchy',
       'Mixed Dem',  'Parliamentary Dem', 'Presidential Dem'
]]

from lifelines import CoxPHFitter

cph = CoxPHFitter()
cph.fit(dat, duration_col='duration', event_col='observed')

cph.print_summary() 
model lifelines.CoxPHFitter
duration col 'duration'
event col 'observed'
baseline estimation breslow
number of observations 1808
number of events observed 1468
partial log-likelihood -9576.63
time fit was run 2021-06-11 03:44:58 UTC
coef exp(coef) se(coef) coef lower 95% coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z p -log2(p)
start_year -0.00 1.00 0.00 -0.01 0.00 0.99 1.00 -1.81 0.07 3.83
Civilian Dict 1.12 3.05 0.22 0.68 1.56 1.97 4.74 4.97 <0.005 20.52
Military Dict 1.29 3.63 0.23 0.84 1.73 2.32 5.66 5.67 <0.005 26.05
Mixed Dem 2.43 11.38 0.23 1.98 2.88 7.26 17.85 10.60 <0.005 84.73
Parliamentary Dem 1.98 7.26 0.22 1.55 2.42 4.69 11.23 8.91 <0.005 60.73
Presidential Dem 2.06 7.84 0.23 1.61 2.50 5.02 12.24 9.06 <0.005 62.68

Concordance 0.63
Partial AIC 19165.27
log-likelihood ratio test 339.29 on 6 df
-log2(p) of ll-ratio test 230.92
plt.figure(figsize = (12, 8))
cph.plot()
plt.show()
_images/7716527af009e7bd877f1c235832a68367e5eb987e3e6bcde9f16b436ea77e3a.png
cph.plot_partial_effects_on_outcome(covariates='Presidential Dem', values=[0, 1], cmap='coolwarm');
_images/39fb7347f47f61f8db0d29a97870f1a4fde711ddd37c937661a5d17cbb521c46.png